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Abstract 

Background  The COVID-19 pandemic has caused significant disruptions to everyday life and has had social, political, 
and financial consequences that will persist for years. Several initiatives with intensive use of technology were quickly 
developed in this scenario. However, technologies that enhance epidemiological surveillance in contexts with low 
testing capacity and healthcare resources are scarce. Therefore, this study aims to address this gap by developing 
a data science model that uses routinely generated healthcare encounter records to detect possible new outbreaks 
early in real-time.

Methods  We defined an epidemiological indicator that is a proxy for suspected cases of COVID-19 using the health 
records of Emergency Care Unit (ECU) patients and text mining techniques. The open-field dataset comprises 
2,760,862 medical records from nine ECUs, where each record has information about the patient’s age, reported 
symptoms, and the time and date of admission. We also used a dataset where 1,026,804 cases of COVID-19 were 
officially confirmed. The records range from January 2020 to May 2022. Sample cross-correlation between two finite 
stochastic time series was used to evaluate the models.

Results  For patients with age ≥18 years, we find time-lag ( τc ) = 72 days and cross-correlation ( ̂pij) ~0.82, τc = 25 days 
and pij ~0.93, and τc = 17 days and p̂ij ~0.88 for the first, second, and third waves, respectively.

Conclusions  In conclusion, the developed model can aid in the early detection of signs of possible new COVID-19 
outbreaks, weeks before traditional surveillance systems, thereby anticipating in initiating preventive and control 
actions in public health with a higher likelihood of success.
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Introduction
The COVID-19 pandemic has had a profound impact on 
the world. It is considered one of humanity’s worst cri-
ses since World War II [1]. The pandemic has caused sig-
nificant disruptions to everyday life and has had social, 
political, and financial consequences that will persist for 
years and decades. The global economy has suffered due 
to the pandemic, leading to governments implementing 
measures to mitigate the spread of the virus and revi-
talize their economies. The pandemic has also affected 
individuals’ physical and mental health, with healthcare 
workers experiencing psychological distress and individ-
uals with pre-existing conditions like fibromyalgia expe-
riencing worsened symptoms [2]. The socioeconomic 
implications of the pandemic have been far-reaching, 
affecting various aspects of the world economy [3]. Both 
developed and developing countries presented insuffi-
cient health facilities to tackle this emergency and strug-
gled with socioeconomic issues, making it harder to 
implement social distancing measures [4]. So far, over 37 
million cases and more than 700,000 deaths have been 
registered in Brazil [5, 6].

This pandemic pressured healthcare systems world-
wide, both in terms of resources for treatment [7], vac-
cine administration [8], and case monitoring capacity 
[9], leading to a significant investment in solutions that 
could optimize the response to the pandemic. Several 
initiatives with intensive use of technology were quickly 
developed in this scenario, ranging from improvements 
in medical equipment for patient respiratory ventilation 
[10] to the extensive use of telemedicine [11] and the use 
of Artificial Intelligence (AI) models to estimate patient 
outcomes [12, 13]. Among the advancements, the epide-
miological surveillance of cases also progressed.

Epidemiological surveillance can be understood as “the 
systematic and continuous collection, analysis, interpre-
tation, and dissemination of data related to a health event 
to take action” [14]. Surveillance is essential to public 
health management, and public managers should make 
evidence-based decisions whenever possible [15]. Since 
the beginning of the COVID-19 pandemic, global inter-
est in real-time monitoring of the number of reported 
cases and deaths and, more importantly, their trend and 
prognosis, which directly impacted the lives of all people, 
revealed the relevance of robust epidemiological surveil-
lance systems [5]. However, most surveillance systems 
currently in operation rely on active reporting of cases, 
whether outpatient, in hospitals, or deaths, surveillance 
through sentinel networks, laboratory test results, and 
active surveillance through interviews conducted by sur-
veillance teams [14]. These systems depend on patients 
reaching the healthcare system, either due to suspicion 
of COVID-19 by a healthcare professional or to undergo 

testing for the disease. This dependency can limit the 
surveillance of new cases and potential outbreaks.

Despite intensive technology use in various healthcare 
sectors, and, more accelerated during the pandemic, devel-
oping technologies that enhance epidemiological surveil-
lance with better case detection, especially in contexts with 
low testing capacity and healthcare resources, is scarce 
and in the prototype phase. For example, publications on 
AI tools to surveillance new and suspected COVID-19 
cases using routinely collected data from health records 
are scarce [16]. Therefore, this study aims to address this 
gap by developing a data science model that uses routinely 
generated healthcare encounter records to detect possible 
new outbreaks of COVID-19 in real-time.

Methods
The Model
We define an epidemiological indicator that is a proxy for 
suspected cases of COVID-19 using the dataset of Emer-
gency Care Unit (ECU) patients (see Datasets) and text 
mining techniques [17]. By Text Mining, we mean a set 
of techniques for the automatic extraction of non-trivial 
information from digital texts. Here, we search for two 
consecutive patterns in each entry of our reported symp-
toms field. The first pattern is the string matching for the 
word “dyspnea’’ (“dispneia’’, in Portuguese) and its syno-
nyms: “shortage of breath’’ (“falta de ar’’) and “respiratory 
discomfort’’ (“desconforto respitatório’’). Once we find any 
of these terms, we search for the second pattern, the string 
matching for the words “cough’’ (“tosse’’, in Portuguese) and 
“fever’’ (“febre’’). If we find at least one of them, we consider 
this patient a suspected case of COVID-19. Finally, the pro-
posed indicator is the daily number of suspected cases. We 
chose Python [18] as the programming language for the 
entire study. In this context, we used the Pandas [19] and 
Unidecode [20] modules for data cleaning, while the Mat-
plotlib [21] module was used to generate all figures.

Datasets
ECU patients
The secretary of health of the state of Ceará compiled 
and made available an anonymized dataset (provided 
in Comma Separated Values - .csv - format) of ECU 
patients from Fortaleza, Ceará, Northeast of Brazil (see 
Data Availability). The Brazilian ECU (“Unidades de 
Pronto Atendimento’’, in Portuguese, or UPA’s, for short) 
are emergency care units that represented the base of 
the public health system during the pandemic in Brazil. 
The dataset ranges from January 2020 to May 2022 and 
comprises 2,760,862 medical records from nine ECUs, 
where each record has information about the patient’s 
age, reported symptoms, and the time and date of admis-
sion. We highlight the fact that health professionals are 
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encouraged to not abbreviate medical terms when filling 
in the entries of the reported symptoms.

Confirmed cases of COVID‑19
The dataset of confirmed cases of COVID-19 from the 
city of Fortaleza, Ceará, Brazil, is available on the Inte-
graSUS platform [22]. We have collected a dataset corre-
sponding to the period from January 2020 to May 2022, 
where 1,026,804 cases of COVID-19 were officially con-
firmed. Here, each record is a confirmed case of COVID-
19 with information about the patient’s age and record 
date. This dataset is also formatted in .csv.

Sample cross‑correlation
The sample cross-correlation between two finite stochas-
tic time series, Xi =

{
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i

}N
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j
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  is the temporal mean of Xt
i  . The sample 

cross-correlation P̂ij is a dimensionless similarity measure 
that ranges from, a perfect negative correlation, to, a per-
fect positive correlation. A negative correlation means that 
if Xi tends to increase, Xj tends to decrease. A positive cor-
relation means the opposite, i.e., if  Xi  tends to 
increase, Xj also tends to increase. This measure is similar 
to the Pearson correlation coefficient [24].

The characteristic time lag τc 
Another important measure in Time Series Analy-
sis is the time lag [25]. Given the iterative process with 
periodic boundary conditions that keep  Xi  stationary 
while Xj is slid in relation to Xi every time unit, the time 
lag τ  between Xi and Xj   of each iteration can be meas-
ured through the accumulated number of slidings. There-
fore, the characteristic time lag τc is defined as the value 
of τ   associated with the maximum value of  P̂ij  during 
such a process.

Ethics approval
The Research Ethics Committee of the Unichristus Uni-
versity Center approved the survey. All methods were 

Fig. 1  Frequencies stratified by age for ECU patients and confirmed cases of COVID-19 datasets. The bar chart shows the absolute frequency 
of age groups for both datasets (in gray and orange). Further, we also show the suspected cases of COVID-19 (in blue), estimated by the proposed 
model from the ECU patients dataset. The line chart (inset) shows the relative frequency of age groups for these quantities. We note the similarity 
between the relative frequencies of ECU patients and suspected cases, suggesting good representativeness of the suspected cases of COVID-19 
compared to the ECU patients dataset
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carried out in accordance with relevant guidelines and 
regulations. If applicable, informed consent was obtained 
from all subjects and/or their legal guardian(s).

Results
Figure 1 shows the absolute frequency of the age groups 
for the ECU patients, suspected cases of COVID-19, 
and confirmed cases of COVID-19. The frequency of 
ECU patients for the 18 age group is the highest among 
all strata. The same is not observed for the frequency of 
confirmed cases, where the highest value is found for the 
35-44 age group. We show the relative frequency of the 
three quantities in the inset since the absolute frequency 
of the suspected cases is much lower than the others. The 
relative frequencies of ECU patients and suspected cases 
follow a similar behavior for patients ages 18 years, lead-
ing us to conclude that the frequency of suspected cases 
is not biased to such age groups. Therefore, we left the 
age stratum of patients ages <18 years out of the main 
analysis since children are more susceptible to seasonal 
respiratory diseases.

Table 1 summarizes the string matching found in the 
ECU patients dataset. For pattern 1, we count 101,523 
for “dyspnea”, 6,999 for “respiratory discomfort”’, and 
44,916 for “shortage of breath”, as shown in the first 
and second columns. For each string matching in pat-
tern 1, we also count the words “cough”, “fever”, and 
both as described in the third and fourth columns. 
The total number of suspected cases estimated by the 
proposed model is 75,289 (~7% of 1,026,804, the total 
number of confirmed cases). The most frequent com-
bined pattern is “dyspnea” and “cough”, corresponding 
to 30,828 (~41%) suspected cases. Furthermore, 90,432 
patients’ records match only pattern 1, indicated by “-” 
in the third column, which is not counted as suspected 
cases. We emphasize that the frequencies of the cor-
rectly spelled words are notably higher than the mis-
spelled ones for all symptoms, which makes us believe 
that these variations would not change our results.

We show the time series of confirmed and suspected 
cases of COVID-19 in Fig. 2. The studied period encloses 
the first three epidemiological waves in Fortaleza. Here, 
the suspected and confirmed cases for patients with age 
18 years are depicted in blue and red, respectively. The 
bars are the daily number of cases, and the solid lines are 
the weekly moving averages. Moving averages smooth 
the fluctuations of daily data, leading to a better visuali-
zation of time series even in cases with the presence of 
holidays and weekends in the studied period. Further-
more, the time interval of 7 days is a common choice 
for moving averages in Epidemiology since it is a value 
greater than 3 days (to attenuate the fluctuation due to 

missing data on long weekends) and matches the natu-
ral periodicity of the pace of the societies. The suspected 
cases curve seems to precede the confirmed cases’ peaks 
for each wave.

As shown in Fig.  3, we compare the time series of 
confirmed cases with the time series of suspected cases 
shifted by  for each COVID-19 wave. For patients with 
age 18 years, we find  = 72 days and  ~0.82,  = 25 days 
and  ~0.93, and  = 17 days and  ~0.88 for the first, second, 
and third waves, respectively.

Figure 4 shows the time series of confirmed and sus-
pected cases of COVID-19 stratified by six age groups, 
which are: 18-24, 25-34, 35-44, 45-54, 55-64, and 65 
years. We find that the time series of suspected cases 
is delayed compared to the time series of confirmed 
cases, showing  above 0.59 in all scenarios. We sum-
marize all values of  and  in Table  2. (TABLE 2) Such 
results suggest that the daily number of suspected cases 
of COVID-19, i.e., the proposed epidemiological indi-
cator, shown in Fig. 3, is indeed not biased by age.

Table 1  Counting of the string matching. The first and second 
columns are related to the first pattern, which consists of 
the string matching for the dyspnea synonyms (“Dyspnea”, 
“Respiratory Discomfort”, and “Shortage of Breath”) found in the 
reported symptoms field from the dataset of ECU patients. The 
following two columns are related to the second pattern, which 
is only searched if the first one is found. The second pattern is 
associated with the string matching of the words “Cough”, “fever”, 
or both, where the absence of matching is represented by “-”. 
The most frequent combined pattern is “Dyspnea” and “Cough”, 
corresponding to 30,828 (~41%) suspected cases, while the 
total number of suspected cases is 75,289 (~7$% of 1,026,804, 
the total number of confirmed cases) in the studied period, 
calculated by the sum of all string matchings for the first and 
second patterns.

Pattern 1 Total Pattern 2 Total Combined

Dyspnea 101,523 Cough 30,828

Fever 9,137

Cough & Fever 12,701

- 48,857

Respiratory Discomfort 6,999 Cough 1,907

Fever 648

Cough & Fever 795

- 3,649

Shortage of Breath 44,916 Cough 10,373

Fever 4,414

Cough & Fever 4,486

- 25,643

Total Suspected Cases = 75,289
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Discussion
This study introduces a text mining model that uses rou-
tinely generated healthcare records data to detect pos-
sible new outbreaks of COVID-19 cases in real time, 
thereby assisting in public health decision-making. 
Although we developed the model to access real-time 
data, both datasets used here were historical records. 
Actually, as a counterpart for the availability of the data-
set, we provided our model to the secretary of health of 
the state of Ceará (SESA). Therefore, they can update the 
time series of suspected cases whenever needed (hourly, 
daily, weekly, etc.). Our system was able to detect pos-
sible outbreaks around 15 days before the usual noti-
fication systems (active and laboratory notification). 
The system was made available through the integraSUS 
platform, an electronic platform already existing in the 
health department and widely used and known by man-
agers for managing actions, which can be seen at https://​
integ​rasus.​saude.​ce.​gov.​br/#/​home. In this system, the 

final output of the model, the graph of suspected cases 
with the flags of possible outbreaks, is visible in real time, 
and is displayed on large televisions in the state’s health 
indicator situation rooms, which health managers have 
access. This data is also shared with other bodies, such as 
the state public ministry, for joint monitoring. The cor-
relation between the modeled and actual data was 0.82, 
0.93, and 0.88 in waves one, two, and three, respectively, 
considering patients aged 18 years or above.

Real-time analysis of epidemiological data is cru-
cial for guiding immediate or planned interventions 
to promptly address an epidemiological problem as it 
arises [14]. The data used by the system we developed is 
generated in real-time during patient care in emergency 
units, making it immediately available for analysis. Log-
ically, the volume of information generated would make 
it impossible to manually generate indicators from this 
mass of data, which is why using artificial intelligence 
in this context is essential. Using the model, data that 

Fig. 2  Time series of suspected and confirmed cases of COVID-19. The bars represent the daily numbers of suspected (in blue) and confirmed (in 
orange) cases of COVID-19. Here, we consider only cases with ages 18 years. The solid lines represent moving averages with windows of 7 days 
for both quantities. The time series are divided into three epidemiological waves: The first occurred between January 2020 and November 2020, 
the second between November 2020 and November 2021, and the third between November 2021 and May 2022. We note that the time series 
of suspected cases of COVID-19 is delayed in comparison to the time series of confirmed cases of COVID-19, endorsing the idea that it is possible 
to early detect COVID-19 waves using only the patient’s reported symptoms

(See figure on next page.)
Fig. 3  The shifted time series of suspected cases of COVID-19 for patients with ages 18 years. For each epidemiological wave, we shift the time 
series of suspected cases of COVID-19 (in blue) by the characteristic time lag , the time lag  associated with the maximum value of the sample 
cross-correlation , and compare it to the time series of confirmed cases of COVID-19 (in orange). (a)-(c) We find  = 72 days and  ~0.82,  = 25 days 
and  ~0.93, and  = 17 days and  ~0.88 for the first, second, and third waves, respectively. Despite the high values of  in all waves, the last two waves 
represent a more trustful value of  since there was a well-known lack of tests in the first wave of COVID-19

https://integrasus.saude.ce.gov.br/#/home
https://integrasus.saude.ce.gov.br/#/home
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Fig. 3  (See legend on previous page.)
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Fig. 4  Stratified time series of suspected and confirmed cases of COVID-19. The bars represent the daily numbers of suspected (in blue) 
and confirmed (in orange) cases of COVID-19. The solid lines represent moving averages with windows of 7 days for both quantities. We show 
the time series of suspected cases of COVID-19 stratified by the following age groups: patients with ages (a) 18-24 years, (b) 25-34 years, (c) 
35-44 years, (d) 45-54 years, (e) 55-64 years, and (f) 65 years. We leave the age stratum of patients with age <18 years out of the main analysis due 
to its particular behavior likely related to seasonal respiratory diseases in children. We also emphasize that, in all remaining strata, the time series 
of suspected cases of COVID-19 are delayed in comparison to the time series of confirmed cases of COVID-19, endorsing, even more, the idea that it 
is possible to early detect COVID-19 waves using only the patient’s reported symptoms
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would typically be lost provides valuable and timely 
information for health system managers. In addition, 
our system utilizes resources and technologies routinely 
available in healthcare units in Brazil. Also, it can oper-
ate in real-time even with data collected from mobile 
units that reach deep into the heart of the Amazon 
rainforest, for example. A similar idea was used in The 
Public Health England Emergency Department Syn-
dromic Surveillance System (EDSSS), which carried out 
near real-time public health surveillance of emergency 
department (ED) attendances across England [26]. 
However, this system didn’t use NLP, it only counted 
structured data. Also, a recent systematic review 
showed advances in the use of natural language process-
ing for surveillance, but it was used in informal inter-
net texts [27]. Finally, a study carried out in Israel used 
a similar technique to detect Covid cases, with specific-
ity found to be 81.5%. However, 78 cases were used to 
verify the model’s accuracy at an individual level, not a 
curve level [28]. Therefore, the initiative presented in 
our article is unique in the current context of epidemio-
logical surveillance.

Our results showed signs suggestive of an outbreak up 
to 71 days before the same signs were identified by con-
firmatory testing for the disease. This result was demon-
strated in the first wave when the availability of tests was 
meager, suggesting that a COVID-19 outbreak could be 
detected earlier by the proposed model than by the test-
ing, especially for emerging and re-emerging diseases or 
for testing shortages. The developed system identified 
the likely occurrence of new waves an average of 3 weeks 
before detection based on official COVID-19 confirmed 
cases data. This information can be crucial in conjunc-
tion with other data to assist in initiating measures to 
prevent large disease outbreaks.

Identifying new suspected or confirmed cases 
of COVID-19 is essential for effective preventive 

public health interventions aimed at reducing the spread 
of the disease and containing it, such as social distanc-
ing decrees, to prevent future outbreaks [15, 29]. Despite 
efforts to enhance epidemiological surveillance, devel-
oping countries still struggle to identify, diagnose accu-
rately, and report these infectious diseases [30]. For 
instance, access to free testing in these countries is still 
limited. As a result, patients with mild or moderate cases 
may not undergo testing, leading to underestimating 
the number of cases. With the advancement of vaccina-
tion coverage, more patients present only mild or mod-
erate cases, are treated symptomatically in emergency 
care settings, and may not be tested. These patients can 
be missed by surveillance systems that rely solely on test-
ing or active reporting from healthcare facilities. In this 
regard, the model we developed using clinical care data 
can help identify cases of patients whom traditional 
surveillance systems would not identify. This improved 
detection capacity can be observed when comparing our 
results with the results from the traditional surveillance 
system used in Brazil. During the first wave, for exam-
ple, the healthcare system did not have sufficient tests or 
infrastructure for mass testing of COVID-19 cases across 
the vast dimensions of the country [31]. Therefore, our 
system identified significantly more cases than the official 
system.

Despite the advances in controlling infectious diseases 
worldwide, diseases such as measles, polio, and den-
gue remain concerns that afflict healthcare systems. For 
instance, many countries in the Americas have recently 
reported measles cases, including Brazil, Venezuela, Can-
ada, the United States, Mexico, Peru, and Argentina [32]. 
In 2018, an outbreak that started in the Northern region 
of Brazil resulted in cases spreading to multiple states, 
including indigenous communities. Consequently, Brazil 
lost its status as a measles-free country [33]. It is evident, 
therefore, that infectious diseases continue to generate 

Table 2  Characteristic time lag and its associated sample cross-correlation stratified by age for each epidemiological wave of COVID-
19. The rows correspond to the waves, and the columns correspond to age groups (18-24, 25-34, 35-44, 45-54, 55-64, and65 years), 
except the last one (Total) that combines all strata. We find that the values of for the first wave are greater than those observed in the 
second and third waves, probably, due to the lack of COVID-19 tests at that time. The ranges between 0.59 and 0.95 in all strata. We 
emphasize that, for a given wave, the values of are quite similar among the strata, suggesting that our results are unbiased in relation 
to age groups

Age Groups

18-24 25-34 35-44 45-54 55-64 ≥65 TOTAL

τc p̂i,j τc p̂i,j τc p̂i,j τc p̂i,j τc p̂i,j τc p̂i,j τc p̂i,j

Wave 1 96 0.69 92 0.77 67 0.80 66 0.80 61 0.81 73 0.71 72 0.82

Wave 2 85 0.59 26 0.77 23 0.90 22 0.95 22 0.94 18 0.90 25 0.93

Wave 3 25 0.91 17 0.88 12 0.89 11 0.82 16 0.82 18 0.86 17 0.88
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outbreaks, epidemics, and health impacts on society. The 
model we developed can be adapted for the surveillance 
of other diseases with significant impact, and we have 
been working on adapting it for the surveillance of den-
gue cases, in a scenario of simultaneous transmission of 
other arboviruses.

Finally, our string-matching model has some limi-
tations related to the following two factors. First, the 
proposed model is reliant on the medical care records 
quality. Misspelling and missing values, like patient’s age, 
impact the results. Second, the model does not use health 
measurements and medical exams. Adding this objective 
data to the patient’s reported symptoms could make this 
model even more robust.

Conclusion
In conclusion, the developed model can aid in the early 
detection of signs of possible new COVID-19 outbreaks 
several days before traditional surveillance systems, 
thereby assisting in initiating preventive and control 
actions in public health with a higher likelihood of 
success.
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